The Interior Euler-Lagrange Operator in Field Theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F15%3A63524585" target="_blank" >RIV/70883521:28140/15:63524585 - isvavai.cz</a>
Alternative codes found
RIV/62690094:18470/15:50004316
Result on the web
<a href="https://www.degruyter.com/view/journals/ms/65/6/article-p1427.xml" target="_blank" >https://www.degruyter.com/view/journals/ms/65/6/article-p1427.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2015-0097" target="_blank" >10.1515/ms-2015-0097</a>
Alternative languages
Result language
angličtina
Original language name
The Interior Euler-Lagrange Operator in Field Theory
Original language description
The paper is devoted to the interior Euler-Lagrange operator in field theory, representing an important tool for constructing the variational sequence. We give a new invariant definition of this operator by means of a natural decomposition of spaces of differential forms, appearing in the sequence, which defines its basic properties. Our definition extends the well-known cases of the Euler-Lagrange class (Euler-Lagrange form) and the Helmholtz class (Helmholtz form). This linear operator has the property of a projector, and its kernel consists of contact forms. The result generalizes an analogous theorem valid for variational sequences over 1-dimensional manifolds and completes the known heuristic expressions by explicit characterizations and proofs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LO1303" target="_blank" >LO1303: Promoting sustainability and development of the Centre for Security, Information and Advanced Technologies (CEBIA-Tech)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICA SLOVACA
ISSN
0139-9918
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
6
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
1427-1444
UT code for WoS article
000372199300014
EID of the result in the Scopus database
2-s2.0-84958953802