Emotion Recognition using AutoEncoders and Convolutional Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F18%3A63520522" target="_blank" >RIV/70883521:28140/18:63520522 - isvavai.cz</a>
Result on the web
<a href="https://mendel-journal.org/index.php/mendel/article/view/31" target="_blank" >https://mendel-journal.org/index.php/mendel/article/view/31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/mendel.2018.1.113" target="_blank" >10.13164/mendel.2018.1.113</a>
Alternative languages
Result language
angličtina
Original language name
Emotion Recognition using AutoEncoders and Convolutional Neural Networks
Original language description
Emotions demonstrate people's reactions to certain stimuli. Facial expression analysis is often used to identify the emotion expressed. Machine learning algorithms combined with artificial intelligence techniques have been developed in order to detect expressions found in multimedia elements, including videos and pictures. Advanced methods to achieve this include the usage of Deep Learning algorithms. The aim of this paper is to analyze the performance of a Convolutional Neural Network which uses AutoEncoder Units for emotion-recognition in human faces. The combination of two Deep Learning techniques boosts the performance of the classification system. 8000 facial expressions from the Radboud Faces Database were used during this research for both training and testing. The outcome showed that five of the eight analyzed emotions presented higher accuracy rates, higher than 90%.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mendel
ISSN
1803-3814
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
113-120
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85072024940