All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimization of the Novelty Detection Model Based on LSTM Autoencoder for ICS Environment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F19%3A63522682" target="_blank" >RIV/70883521:28140/19:63522682 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-30329-7_28" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-30329-7_28</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimization of the Novelty Detection Model Based on LSTM Autoencoder for ICS Environment

  • Original language description

    The recent evolution in cybersecurity shows how vulnerable our technology is. In addition, contemporary society becoming more reliant on &quot;vulnerable technology&quot;. This is especially relevant in case of critical information infrastructure, which is vital to retain the functionality of modern society. Furthermore, the cyber-physical systems as Industrial control systems are an essential part of critical information infrastructure; and therefore, need to be protected. This article presents a comprehensive optimization methodology in the field of industrial network anomaly detection. We introduce a recurrent neural network preparation for a one-class classification task. In order to optimize the recurrent neural network, we adopted a genetic algorithm. The main goal is to create a robust predictive model in an unsupervised manner. Therefore, we use hyperparameter optimization according to the validation loss function, which defines how well the machine learning algorithm models the given data. To achieve this goal, we adopted multiple techniques as data preprocessing, feature reduction, genetic algorithm, etc.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/VI20172019054" target="_blank" >VI20172019054: An analitical software module for the real-time resilience evaluation from point of the converged security</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing (Vol. 1)

  • ISBN

    978-3-030-30328-0

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    306-319

  • Publisher name

    Springer Verlag

  • Place of publication

    Berlín

  • Event location

    Zlín

  • Event date

    Oct 3, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article