Polyurethane-carbon nanotubes composite dual band antenna for wearable applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63526413" target="_blank" >RIV/70883521:28140/20:63526413 - isvavai.cz</a>
Alternative codes found
RIV/70883521:28610/20:63526413
Result on the web
<a href="https://www.mdpi.com/2073-4360/12/11/2759" target="_blank" >https://www.mdpi.com/2073-4360/12/11/2759</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym12112759" target="_blank" >10.3390/polym12112759</a>
Alternative languages
Result language
angličtina
Original language name
Polyurethane-carbon nanotubes composite dual band antenna for wearable applications
Original language description
The design of a unipole and a dual band F-shaped antenna was conducted to find the best parameters of prepared antenna. Antenna radiator part is fully made of polymer and nonmetal base composite. Thermoplastic polyurethane (PU) was chosen as a matrix and multi-wall carbon nanotubes (MWCNT) as an electrical conductive filler, which creates conductive network. The use of the composite for the antenna has the advantage in simple preparation through dip coating technique. Minor disadvantage is the usage of solvent for composite preparation. Composite structure was used for radiator part of antenna. The antenna operates in 2.45 and 5.18 GHz frequency bands. DC conductivity of our PU/MWCNT composite is about 160 S/m. With this material, a unipole and a dual band F antenna were realized on 2 mm thick polypropylene substrate. Both antenna designs were also simulated using finite integration technique in the frequency domain (FI-FD). Measurements and full wave simulations of S11 of the antenna showed good agreement between measurements and simulations. Except for S11, the gain and radiation pattern of the antennas were measured and simulated. Maximum gain of the designed unipole antenna is around −10.0 and −5.5 dBi for 2.45 and 5.18 GHz frequency bands, respectively. The manufactured antennas are intended for application in wearable electronics, which can be used to monitor various activities such as walking, sleeping, heart rate or food consumption.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
<a href="/en/project/ED2.1.00%2F19.0409" target="_blank" >ED2.1.00/19.0409: CPS - strengthening research capacity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Polymers
ISSN
2073-4360
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
1-17
UT code for WoS article
000594427600001
EID of the result in the Scopus database
2-s2.0-85096426639