All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Integral comparison criteria for half-linear differential equations seen as a perturbation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63536259" target="_blank" >RIV/70883521:28140/21:63536259 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/9/5/502" target="_blank" >https://www.mdpi.com/2227-7390/9/5/502</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math9050502" target="_blank" >10.3390/math9050502</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Integral comparison criteria for half-linear differential equations seen as a perturbation

  • Original language description

    In this paper, we present further developed results on Hille–Wintner-type integral comparison theorems for second-order half-linear differential equations. Compared equations are seen as perturbations of a given non-oscillatory equation, which allows studying the equations on the borderline of oscillation and non-oscillation. We bring a new comparison theorem and apply it to the so-called generalized Riemann–Weber equation (also referred to as a Euler-type equation). © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000628348500001

  • EID of the result in the Scopus database

    2-s2.0-85102528899