Integral comparison criteria for half-linear differential equations seen as a perturbation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63536259" target="_blank" >RIV/70883521:28140/21:63536259 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/9/5/502" target="_blank" >https://www.mdpi.com/2227-7390/9/5/502</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9050502" target="_blank" >10.3390/math9050502</a>
Alternative languages
Result language
angličtina
Original language name
Integral comparison criteria for half-linear differential equations seen as a perturbation
Original language description
In this paper, we present further developed results on Hille–Wintner-type integral comparison theorems for second-order half-linear differential equations. Compared equations are seen as perturbations of a given non-oscillatory equation, which allows studying the equations on the borderline of oscillation and non-oscillation. We bring a new comparison theorem and apply it to the so-called generalized Riemann–Weber equation (also referred to as a Euler-type equation). © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
5
Country of publishing house
CH - SWITZERLAND
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000628348500001
EID of the result in the Scopus database
2-s2.0-85102528899