On the common population diversity measures in metaheuristics and their limitations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63544878" target="_blank" >RIV/70883521:28140/21:63544878 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/abstract/document/9660135/keywords#keywords" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9660135/keywords#keywords</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SSCI50451.2021.9660135" target="_blank" >10.1109/SSCI50451.2021.9660135</a>
Alternative languages
Result language
angličtina
Original language name
On the common population diversity measures in metaheuristics and their limitations
Original language description
Maintaining population diversity is one of the fundamental challenges for metaheuristic algorithms. With the emergence of adaptive and self-adaptive methods, the population diversity is frequently used as an indicator of the population state and feedback for the adaptive mechanism. In literature, several methods for quantification of the population diversity were proposed over the years. However, expressing the overall complexity of a metaheuristic population state by a single number inherently leads to simplification and distortion. As we show in this paper, lower diversity value does not automatically mean worse conditions for the emerging of new feasible solutions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings
ISBN
978-172819048-8
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
1
Publisher name
Institute of Electrical and Electronics Engineers Inc.
Place of publication
Piscataway, New Jersey
Event location
Orlando
Event date
Dec 5, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—