Applications of the differential transform to second-order half-linear Euler equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556418" target="_blank" >RIV/70883521:28140/22:63556418 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26220/22:PU143438
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S1877750322000060?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1877750322000060?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jocs.2022.101564" target="_blank" >10.1016/j.jocs.2022.101564</a>
Alternative languages
Result language
angličtina
Original language name
Applications of the differential transform to second-order half-linear Euler equations
Original language description
Nonlinear differential equations are considered to be an important tool for describing a number of phenomena in engineering and the natural sciences, and their study is thus subject to contemporary research. The purpose of the paper is to show applications of the differential transform to second-order half-linear Euler equations with and without delay. The case of proportional delay is considered. Finding a numerical solution to an initial value problem is reduced to solving recurrence relations. The outputs of the recurrence relations are coefficients of the Taylor series of the solution. Validity of the presented algorithm is demonstrated on concrete examples of initial value problems. Numerical results are compared with solutions produced by Matlab function “ddesd”. © 2022 Elsevier B.V.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF COMPUTATIONAL SCIENCE
ISSN
1877-7503
e-ISSN
1877-7511
Volume of the periodical
59
Issue of the periodical within the volume
Neuveden
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
1-6
UT code for WoS article
000777303200002
EID of the result in the Scopus database
2-s2.0-85123867326