All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Slicing aided large scale tomato fruit detection and counting in 360-degree video data from a greenhouse

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556519" target="_blank" >RIV/70883521:28140/22:63556519 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0263224122011733?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0263224122011733?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.measurement.2022.111977" target="_blank" >10.1016/j.measurement.2022.111977</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Slicing aided large scale tomato fruit detection and counting in 360-degree video data from a greenhouse

  • Original language description

    This paper proposes an automated tomato fruit detection and counting process without a need for any human intervention. First of all, wide images of whole tomato plant rows were extracted from a 360-degree video taken in a greenhouse. These images were utilized to create a new object detection dataset. The original tomato detection methodology uses a deep CNN model with slicing-aided inference. The process encompasses two stages: first, the images are cut into patches for object detection, and consequently, the predictions are stitched back together. The paper also presents an extensive study of post-processing parameters needed to stitch object detections correctly, especially on the patch&apos;s borders. Final results reach 83.09% F1 score value on a test set, proving the suitability of the proposed methodology for robotic farming.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/FW01010381" target="_blank" >FW01010381: Intelligent robotic health protection of the hydroponic greenhouse ecosystem</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Measurement

  • ISSN

    0263-2241

  • e-ISSN

    1873-412X

  • Volume of the periodical

    204

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000876254100002

  • EID of the result in the Scopus database

    2-s2.0-85140136384