Slicing aided large scale tomato fruit detection and counting in 360-degree video data from a greenhouse
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556519" target="_blank" >RIV/70883521:28140/22:63556519 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0263224122011733?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0263224122011733?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.measurement.2022.111977" target="_blank" >10.1016/j.measurement.2022.111977</a>
Alternative languages
Result language
angličtina
Original language name
Slicing aided large scale tomato fruit detection and counting in 360-degree video data from a greenhouse
Original language description
This paper proposes an automated tomato fruit detection and counting process without a need for any human intervention. First of all, wide images of whole tomato plant rows were extracted from a 360-degree video taken in a greenhouse. These images were utilized to create a new object detection dataset. The original tomato detection methodology uses a deep CNN model with slicing-aided inference. The process encompasses two stages: first, the images are cut into patches for object detection, and consequently, the predictions are stitched back together. The paper also presents an extensive study of post-processing parameters needed to stitch object detections correctly, especially on the patch's borders. Final results reach 83.09% F1 score value on a test set, proving the suitability of the proposed methodology for robotic farming.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/FW01010381" target="_blank" >FW01010381: Intelligent robotic health protection of the hydroponic greenhouse ecosystem</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Measurement
ISSN
0263-2241
e-ISSN
1873-412X
Volume of the periodical
204
Issue of the periodical within the volume
Neuveden
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
1-11
UT code for WoS article
000876254100002
EID of the result in the Scopus database
2-s2.0-85140136384