ARIMA for short-term and LSTM for long-term in daily Bitcoin price prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570219" target="_blank" >RIV/70883521:28140/23:63570219 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-23492-7_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-23492-7_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-23492-7_12" target="_blank" >10.1007/978-3-031-23492-7_12</a>
Alternative languages
Result language
angličtina
Original language name
ARIMA for short-term and LSTM for long-term in daily Bitcoin price prediction
Original language description
The goal of this paper is the insight into the forecasting of Bitcoin price using machine learning models like AutoRegressive Integrated Moving Average (ARIMA), Support vector machines (SVM), hybrid ARIMA-SVM, and Long short-term memory (LSTM). Depending on the different types of data and the period, various models are used for prediction. A single model may be the best fit in the short term but may not be the best in long-term series data. Thus, using only a single model may not be suitable for forecasting time series data that depends on data sampling length and prediction time, and the type of specific applications. As a result, the ARIMA model produces better error results with a short prediction period or a small data set. In contrast, the Hybrid ARIMA-SVM model will help improve the performance of the ARIMA model when predicting over a long period, specifically 7 and 30 days for Bitcoin price prediction used in this research paper. The paper aims to compare traditional models such as the ARIMA, the Hybrid ARIMA-SVM, and deep learning models such as LSTM on a specific cryptocurrency prediction task using different scenarios. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT I
ISBN
—
ISSN
2945-9133
e-ISSN
1611-3349
Number of pages
13
Pages from-to
131-143
Publisher name
Springer
Place of publication
Cham
Event location
Zakopane
Event date
Jun 19, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000972696000012