All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ARIMA for short-term and LSTM for long-term in daily Bitcoin price prediction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570219" target="_blank" >RIV/70883521:28140/23:63570219 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-23492-7_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-23492-7_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-23492-7_12" target="_blank" >10.1007/978-3-031-23492-7_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ARIMA for short-term and LSTM for long-term in daily Bitcoin price prediction

  • Original language description

    The goal of this paper is the insight into the forecasting of Bitcoin price using machine learning models like AutoRegressive Integrated Moving Average (ARIMA), Support vector machines (SVM), hybrid ARIMA-SVM, and Long short-term memory (LSTM). Depending on the different types of data and the period, various models are used for prediction. A single model may be the best fit in the short term but may not be the best in long-term series data. Thus, using only a single model may not be suitable for forecasting time series data that depends on data sampling length and prediction time, and the type of specific applications. As a result, the ARIMA model produces better error results with a short prediction period or a small data set. In contrast, the Hybrid ARIMA-SVM model will help improve the performance of the ARIMA model when predicting over a long period, specifically 7 and 30 days for Bitcoin price prediction used in this research paper. The paper aims to compare traditional models such as the ARIMA, the Hybrid ARIMA-SVM, and deep learning models such as LSTM on a specific cryptocurrency prediction task using different scenarios. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT I

  • ISBN

  • ISSN

    2945-9133

  • e-ISSN

    1611-3349

  • Number of pages

    13

  • Pages from-to

    131-143

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Zakopane

  • Event date

    Jun 19, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000972696000012