All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving the performance of effort estimation in terms of function point analysis by balancing datasets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570239" target="_blank" >RIV/70883521:28140/23:63570239 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-21435-6_60" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21435-6_60</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-21435-6_60" target="_blank" >10.1007/978-3-031-21435-6_60</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving the performance of effort estimation in terms of function point analysis by balancing datasets

  • Original language description

    This research proposes an approach to improve the performance of effort estimation based on the balancing of each group for categorical variables. The proposed model is based on function point analysis, Industry Sector, and deep learning. The Pytorch library is used to build the deep learning model with the dataset ISBSG (release 2020). The accuracy of our model is compared with that of the Adj-Effort approach. We adopt the prediction level at 0.3, Mean Absolute Error, Mean Balanced Relative Error, Mean Inverted Balanced Relative Error, and Standardised Accuracy as criteria for validation. The findings demonstrate that our proposed model outweighs the unbalanced and Adj-Effort approaches. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Networks and Systems

  • ISBN

    978-3-031-21434-9

  • ISSN

    23673370

  • e-ISSN

    2367-3389

  • Number of pages

    10

  • Pages from-to

    705-714

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

    Berlín

  • Event location

    on-line

  • Event date

    Oct 10, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article