All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sub-region segmentation of brain tumors from multimodal MRI images using 3D U-Net

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570398" target="_blank" >RIV/70883521:28140/23:63570398 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-21438-7_29" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21438-7_29</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-21438-7_29" target="_blank" >10.1007/978-3-031-21438-7_29</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sub-region segmentation of brain tumors from multimodal MRI images using 3D U-Net

  • Original language description

    Accurate segmentation of brain tumors from the magnetic resonance image (MRI) is an essential step for radionics analysis as well as finding the tumor extension is so necessary to plan the best treatment to improve the survival rate. Manually extracting sub-regions of the brain tumor from MRI is a tedious process and time-consuming, as the complex brain tumor images require extensive human expertise. In recent years, deep learning models have proved effective in medical image segmentation tasks. In brain tumor segmentation, the 3D multimodal MRI poses some challenges such as computation and memory limitations. This study aims to develop a deep learning model using 3D U-Net for brain tumor segmentation. The segmentation results on BraTS 2020 dataset show that the proposed model achieves promising performance. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Networks and System (Volume 597 LNNS)

  • ISBN

    978-3-031-21437-0

  • ISSN

    2367-3370

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    357-367

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

    Berlín

  • Event location

    on-line

  • Event date

    Oct 10, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000992418500029