Remote sensing image fusion based on PCA and wavelets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570458" target="_blank" >RIV/70883521:28140/23:63570458 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-981-19-7524-0_3" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-19-7524-0_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-19-7524-0_3" target="_blank" >10.1007/978-981-19-7524-0_3</a>
Alternative languages
Result language
angličtina
Original language name
Remote sensing image fusion based on PCA and wavelets
Original language description
Remote sensing, in the recent past, has witnessed continuous developments in the field of environment, agriculture and security. The satellites obtain the information in two domains—spectral resolution and spatial resolution which are highlighted in the Low-Resolution Multi-Spectral (LRMS) and the Panchromatic (PAN) images, respectively. Remote sensing image fusion aims to integrate this complimentary information of the PAN and the LRMS images. In this paper, this has been achieved through Principal Component Analysis (PCA) and Discrete Wavelet Transformation (DWT). The proposed fusion approach involves extraction of the Ist Principal Component (PC) of the LRMS image while simultaneously performing Morphological Hat Transformation on PAN image. The resultant images undergo Discrete Wavelet Transformation to produce approximation (cA) and detail (cD) coefficients. These coefficients are fused using appropriate fusion rules, and the resultant images are synthesized using Inverse Discrete Wavelet Transformation (IDWT) to produce the final fused image. The results have been evaluated which are presented in the later sections. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Smart Innovation, Systems and Technologies
ISBN
978-981-19752-3-3
ISSN
2190-3018
e-ISSN
2190-3026
Number of pages
9
Pages from-to
25-33
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
Berlín
Event location
Aizawl
Event date
Jun 18, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—