Maximizing efficiency: A comparative study of SOMA variants and constraint handling methods for time delay system optimization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570998" target="_blank" >RIV/70883521:28140/23:63570998 - isvavai.cz</a>
Result on the web
<a href="https://dl.acm.org/doi/10.1145/3583133.3596417" target="_blank" >https://dl.acm.org/doi/10.1145/3583133.3596417</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3583133.3596417" target="_blank" >10.1145/3583133.3596417</a>
Alternative languages
Result language
angličtina
Original language name
Maximizing efficiency: A comparative study of SOMA variants and constraint handling methods for time delay system optimization
Original language description
This paper presents an experimental study that compares four adaptive variants of the self-organizing migrating algorithm (SOMA). Each variant uses three different constraint handling methods for the optimization of a time delay system model. The paper emphasizes the importance of metaheuristic algorithms in control engineering for time-delayed systems to develop more effective and efficient control strategies and precise model identifications. The study includes a detailed description of the selected variants of the SOMA and the adaptive mechanisms used. A complex workflow of experiments is described, and the results and discussion are presented. The experimental results highlight the effectiveness of the SOMA variants with specific constraint handling methods for time delay system optimization. Overall, this study contributes to the understanding of the challenges and advantages of using metaheuristic algorithms in control engineering for time delay systems. The results provide valuable insights into the performance of the SOMA variants and can help guide the selection of appropriate constraint handling methods and the adaptive mechanisms of metaheuristics. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GF21-45465L" target="_blank" >GF21-45465L: Metaheuristic-based parametric optimization of time-delay models and control systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
ISBN
979-840070120-7
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
1821-1829
Publisher name
Association for Computing Machinery, Inc
Place of publication
New York
Event location
Lisbon
Event date
Jul 15, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001117972600295