All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Enhancing a hierarchical evolutionary strategy using the nearest-better clustering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F24%3A63580358" target="_blank" >RIV/70883521:28140/24:63580358 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-63759-9_43" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-63759-9_43</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-63759-9_43" target="_blank" >10.1007/978-3-031-63759-9_43</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Enhancing a hierarchical evolutionary strategy using the nearest-better clustering

  • Original language description

    A straightforward way of solving global optimization problems is to find all local optima of the objective function. Therefore, the ability of detecting multiple local optima is a key feature of a practically usable global optimization method. One of such methods is a multi-population evolutionary strategy called the Hierarchic Memetic Strategy (HMS). Although HMS has already proven its global optimization capabilities there is an area for improvement. In this paper we show such an enhancement resulting from the application of the Nearest-Better Clustering. Results of experiments consisting both of curated benchmarks and a real-world inverse problem show that on average the performance is indeed improved compared to the baseline HMS and remains on par with state-of-the-art evolutionary global optimization methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GF21-45465L" target="_blank" >GF21-45465L: Metaheuristic-based parametric optimization of time-delay models and control systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational Science, ICCS 2024, pt III

  • ISBN

    978-3-031-63758-2

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    423-437

  • Publisher name

    Springer International Publishing AG

  • Place of publication

    Basel

  • Event location

    Malaga

  • Event date

    Jul 2, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001279325500043