All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Using LLM for automatic evolvement of metaheuristics from swarm algorithm SOMA

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F24%3A63587659" target="_blank" >RIV/70883521:28140/24:63587659 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/3638530.3664181" target="_blank" >http://dx.doi.org/10.1145/3638530.3664181</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3638530.3664181" target="_blank" >10.1145/3638530.3664181</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Using LLM for automatic evolvement of metaheuristics from swarm algorithm SOMA

  • Original language description

    This study investigates the use of the GPT-4 Turbo, a large language model, to enhance the Self-Organizing Migrating Algorithm (SOMA), specifically its All to All variant (SOMA-ATA). Utilizing the model&apos;s extensive context capacity for iterative prompting without feedback, we sought to autonomously generate superior algorithmic versions. Contrary to our initial hypothesis, the improvements did not progress linearly. Nevertheless, one iteration stood out significantly, consistently outperforming the baseline across various pairwise comparisons and showing a robust performance profile. This iteration&apos;s structure deviated substantially from traditional SOMA principles, underscoring the potential of large language models to create distinctive and effective algorithmic strategies. The results affirm the methodology&apos;s ability to produce high-performing algorithms without expert intervention, setting the stage for future research to integrate feedback mechanisms and conduct detailed code analyses to understand further the modifications made by the Large Language Models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GF21-45465L" target="_blank" >GF21-45465L: Metaheuristic-based parametric optimization of time-delay models and control systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    GECCO 2024 Companion - Proceedings of the 2024 Genetic and Evolutionary Computation Conference Companion

  • ISBN

    979-8-4007-0495-6

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    2018-2022

  • Publisher name

    Association for Computing Machinery, Inc

  • Place of publication

    New York

  • Event location

    Melbourne

  • Event date

    Jul 14, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article