MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F16%3A43874448" target="_blank" >RIV/70883521:28610/16:43874448 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007/s10008-016-3162-2" target="_blank" >http://link.springer.com/article/10.1007/s10008-016-3162-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10008-016-3162-2" target="_blank" >10.1007/s10008-016-3162-2</a>
Alternative languages
Result language
angličtina
Original language name
MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes
Original language description
A facile two-step strategy is developed for synthesis of MnO2/polyaniline (PANI) hybrid nanostructures on carbon cloth (CC). Vertically aligned PANI nanofiber arrays were firstly grown on CC via chemical oxidative polymerization, and MnO2 nanoparticles were then deposited on the surface of PANI nanofibers via redox reaction between PANI and KMnO4 solution. Structural and morphological characterizations of composites were investigated by FESEM, Raman, and XPS techniques, respectively. Electrochemical performance of the composites as supercapacitor electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. The results demonstrate that the morphology and areal specific capacitance of the MnO2/PANI/CC composite vary with MnO2 deposition time. The ternary composite with 6 h MnO2 deposition exhibits a high areal capacitance of 1.56 F cmMINUS SIGN 2 at the scan rate of 10 mV sMINUS SIGN 1 and 0.99 F cmMINUS SIGN 2 at a current density of 2 mA cmMINUS SIGN 2 and still maintains 88.1 % of the original capacitance after 1000 charge-discharge cycles at a large current density of 10 mA cmMINUS SIGN 2.The excellent performance is due to the synergistic effect from the combination of two active pseudo materials and 3D conductive CC backbone. This study further highlights the importance of optimal design and control of material structures in supercapacitor applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JE - Non-nuclear power engineering, energy consumption and utilization
OECD FORD branch
—
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Solid State Electrochemistry
ISSN
1432-8488
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
9
Pages from-to
1459-1467
UT code for WoS article
000374840400027
EID of the result in the Scopus database
2-s2.0-84959128880