Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F17%3A63516126" target="_blank" >RIV/70883521:28610/17:63516126 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0022369717303438" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0022369717303438</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpcs.2017.05.029" target="_blank" >10.1016/j.jpcs.2017.05.029</a>
Alternative languages
Result language
angličtina
Original language name
Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method
Original language description
This paper reports a honey-mediated green synthesis of ZnFe2O4 spinel ferrite nanoparticles and the effect of further annealing on structural, magnetic, optical, dielectric and electrical properties. X-ray diffraction study confirmed the well formation of ZnFe2O4 spinel ferrite crystal structure. Raman and Fourier transform infrared spectroscopy confirmed the formation of spinel ferrite crystal structure. The scanning electron microscopy study revealed the formation of spherical morphology at lower annealing temperature with achieved particle size 30–60 nm, whereas, octahedral like morphology at higher annealing temperature with particle size 50–400 nm. Magnetization measurements were carried out using a vibrating sample magnetometer at room temperature. The estimated magnetic parameter such as saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) showed variation in value with nano-crystallite size. The highest saturation magnetization (Ms) was 12.81 emu/g for as-synthesized ZnFe2O4 spinel ferrite nanoparticles, whereas, highest coercivity (Hc) was 25.77 Oe for ZnFe2O4 nanoparticles annealed at high temperature 1000 °C. UV–Visible reflectance spectroscopy showed the band gap variation from 1.90 eV to 2.14 eV with the increase of annealing temperature. The dielectric constant and dielectric loss were decreased with frequency showing the normal behavior of spinel ferrites. The variation in conductivity is explained in terms of the variation in microstructure and variation in the mobility of charge carriers associated with the cation redistribution induced by annealing or grain size. The modulus and impedance spectroscopy study revealed the influence of bulk grain and the grain boundary on the electrical resistance and capacitance of ZnFe2O4 nanoparticles. The results presented in this work are helpful for green synthesis of well-controlled size, morphology and physical properties of ZnFe2O4 nanoparticles.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
21001 - Nano-materials (production and properties)
Result continuities
Project
<a href="/en/project/LO1504" target="_blank" >LO1504: Centre of Polymer Systems Plus</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics and Chemistry of Solids
ISSN
0022-3697
e-ISSN
—
Volume of the periodical
110
Issue of the periodical within the volume
Neuveden
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
87-99
UT code for WoS article
000407660700012
EID of the result in the Scopus database
2-s2.0-85020239454