All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electrorheological Performance of graphene oxide particles grafted with poly(alpha-methylstyrene) using SI-ATRP Approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F17%3A63516846" target="_blank" >RIV/70883521:28610/17:63516846 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electrorheological Performance of graphene oxide particles grafted with poly(alpha-methylstyrene) using SI-ATRP Approach

  • Original language description

    Electrorheological (ER) suspension are special class of systems, those physical properties, such as viscosity can be tuned using external electric field strength. Generally, they are two-phase systems consisting of solid polarizable particles and liquid insulating medium. After application of the external electric field, the particles are polarized and create the chain-like structures in the direction of the electric field streamlines. Such internal structure development resulting in the significant increase in viscosity usually in four orders of magnitude and more. This phenomenon is reversible, repeatable and once the electric field is switched-off the suspension become to its initial state. However, due to the usually various nature of dispersed phase and liquid medium, the sedimentation stability of the suspensions is the main issue. In addition, the ER performance of various systems based on conducting polymers is not sufficient, thus the development of the novel dispersed phases are still attractive. Moreover, graphene oxide (GO) particles and their hybrids were recently recognized as suitable materials for ER suspensions. Hence, we were performed the SI-ATRP from GO surface as a novel approach how to provide GO-polymer particles with tunable conductivity and polymer layer in single step and thus solve the main drawbacks such as sedimentation stability as well as proper ER performance.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2017 Conference Proceedings

  • ISBN

    978-80-87294-81-9

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    7

  • Pages from-to

    104-110

  • Publisher name

    Tanger Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 18, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article