All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Folic acid-chitosan-alginate nanocomplexes for multiple delivery of chemotherapeutic agents

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F18%3A63521424" target="_blank" >RIV/70883521:28610/18:63521424 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1773224718302910" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1773224718302910</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jddst.2018.06.020" target="_blank" >10.1016/j.jddst.2018.06.020</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Folic acid-chitosan-alginate nanocomplexes for multiple delivery of chemotherapeutic agents

  • Original language description

    A major challenge faced by researchers involved in the sphere of drug delivery is the development of innovative multidrug delivery systems. Herein, experimentation focused on preparing nanocomplexes based on chitosan and alginic acid with the purpose of allocating a combination of chemotherapeutic drugs, improving their efficacy and reducing dosage. In order to enhance targeting, conjugation with folic acid was performed. The prepared carriers exhibited a spherical shape with a diameter in the range 70–120 nm, a ζ-potential between 30 and 35 mV with good stability in human serum, and low hemolytic activity of up to 100 μg/mL. Over 800 μg of drugs per mg of carrier were loaded and released, displaying a pH-dependent trend with no physical, chemical and biological interferences, which benefited from the advantage of having full control over the given release of drug. In vitro studies performed on human epithelial cervix carcinoma cells and mouse fibroblast cells clearly demonstrated that said dual-loaded complexes showed greater cytotoxicity than single-loaded and free-drug formulations. The viability of the cells decreased, thereby confirming the primary role played by the targeting molecule.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30404 - Biomaterials (as related to medical implants, devices, sensors)

Result continuities

  • Project

    <a href="/en/project/LO1504" target="_blank" >LO1504: Centre of Polymer Systems Plus</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Drug Delivery Science and Technology

  • ISSN

    1773-2247

  • e-ISSN

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    67-76

  • UT code for WoS article

    000445162500009

  • EID of the result in the Scopus database

    2-s2.0-85049463356