All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electrically conductive, transparent polymeric nanocomposites modified by 2D Ti3C2Tx (MXene)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F19%3A63523619" target="_blank" >RIV/70883521:28610/19:63523619 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/19:10403932

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/11/8/1272" target="_blank" >https://www.mdpi.com/2073-4360/11/8/1272</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym11081272" target="_blank" >10.3390/polym11081272</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electrically conductive, transparent polymeric nanocomposites modified by 2D Ti3C2Tx (MXene)

  • Original language description

    The electrically conductive, transparent, and flexible self-standing thin nanocomposite films based on copolyamide matrix (coPA:Vestamelt X1010) modified with 2D Ti3C2Tx (MXene) nanosheets were prepared by casting and their electrical, mechanical and optical properties and then, were investigated. The percolation threshold of the MXene filler within the coPA matrix was found to be 0.05 vol. %, and the highest determined electrical conductivity was 1.4 x 10(-2) Scm(-1) for the composite filled with 5 wt. % (1.8 vol. %) of MXene. The electrical conductivity of the as-prepared MXene was 9.1 Scm(-1), and the electrical conductivity of the MAX phase (the precursor for MXene preparation) was 172 Scm(-1). The transparency of the prepared composite films exceeded 75%, even for samples containing 5 wt. % of MXene, as confirmed by UV spectroscopy. The dynamic mechanical analysis confirmed the improved mechanical properties, such as the storage modulus, which improved with the increasing MXene content. Moreover, all the composite films were very flexible and did not break under repeated twisting. The combination of the relatively high electrical conductivity of the composites filled with low filler content, an appropriate transparency, and good mechanical properties make these materials promising for applications in flexible electronics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    19

  • Pages from-to

  • UT code for WoS article

    000484552900042

  • EID of the result in the Scopus database

    2-s2.0-85073896342