All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Amorphous vanadium oxides with metallic character for asymmetric supercapacitors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F21%3A63527459" target="_blank" >RIV/70883521:28610/21:63527459 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1385894720325080" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1385894720325080</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cej.2020.126380" target="_blank" >10.1016/j.cej.2020.126380</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Amorphous vanadium oxides with metallic character for asymmetric supercapacitors

  • Original language description

    Exploiting high-capacitance and broad-potential anode materials is of critical for boosting the energy density of aqueous asymmetric supercapacitors. Herein, we have reported the synthesis of the amorphous vanadium oxide nanosheet arrays with metallicity by defect engineering, which enables the oxygen vacancy content as high as 28.5%. The DOS calculations and the XPS analysis further disclose the disappearance of band gap. The oxygen vacancy can also accelerate the ions migration on their (sub-) surface with lower energy barrier. Consequently, the as-obtained anode delivers an ultrahigh specific capacitance of 554 mF·cm−2 (346 F·g−1) at 1 mA·cm−2 (0.625 A·g−1) with a capacitance retention of 66% even at 32 mA·cm−2. After assembling into a flexible quasi-solid-state asymmetric supercapacitor, the energy density can reach as high as 161.8 μWh·cm−2 at 0.5 mW·cm−2. This finding has extended the defect engineering strategy to regulate the crystal structure and electrical conductivity for high-performance electrochemical devices.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Journal

  • ISSN

    1385-8947

  • e-ISSN

  • Volume of the periodical

    403

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

  • UT code for WoS article

    000579752500099

  • EID of the result in the Scopus database

    2-s2.0-85088640033