All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of hofmeister ions on transport properties of aqueous solutions of sodium hyaluronate

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F21%3A63528418" target="_blank" >RIV/70883521:28610/21:63528418 - isvavai.cz</a>

  • Alternative codes found

    RIV/70883521:28110/21:63528418

  • Result on the web

    <a href="https://www.mdpi.com/1422-0067/22/4/1932" target="_blank" >https://www.mdpi.com/1422-0067/22/4/1932</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijms22041932" target="_blank" >10.3390/ijms22041932</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of hofmeister ions on transport properties of aqueous solutions of sodium hyaluronate

  • Original language description

    Tracer diffusion coefficients obtained from the Taylor dispersion technique at 25.0◦C were measured to study the influence of sodium, ammonium and magnesium salts at 0.01 and 0.1 mol dm−3 on the transport behavior of sodium hyaluronate (NaHy, 0.1%). The selection of these salts was based on their position in Hofmeister series, which describe the specific influence of different ions (cations and anions) on some physicochemical properties of a system that can be interpreted as a salting-in or salting-out effect. In our case, in general, an increase in the ionic strength (i.e., concentrations at 0.01 mol dm−3 ) led to a significant decrease in the limiting diffusion coefficient of the NaHy 0.1%, indicating, in those circumstances, the presence of salting-in effects. However, the opposite effect (salting-out) was verified with the increase in concentration of some salts, mainly for NH4SCN at 0.1 mol dm−3 . In this particular salt, the cation is weakly hydrated and, consequently, its presence does not favor interactions between NaHy and water molecules, promoting, in those circumstances, less resistance to the movement of NaHy and thus to the increase of its diffusion (19%). These data, complemented by viscosity measurements, permit us to have a better understanding about the effect of these salts on the transport behaviour of NaHy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Molecular Sciences

  • ISSN

    1661-6596

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000623798800001

  • EID of the result in the Scopus database

    2-s2.0-85100975164