Sustainability assessment and techno-economic analysis of thermally enhanced polymer tube for multi-effect distillation (Med) technology
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F21%3A63528619" target="_blank" >RIV/70883521:28610/21:63528619 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-4360/13/5/681" target="_blank" >https://www.mdpi.com/2073-4360/13/5/681</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym13050681" target="_blank" >10.3390/polym13050681</a>
Alternative languages
Result language
angličtina
Original language name
Sustainability assessment and techno-economic analysis of thermally enhanced polymer tube for multi-effect distillation (Med) technology
Original language description
Metal-alloys tubes are used in the falling-film evaporator of the multi-effect distillation (MED) that is the dominant and efficient thermal seawater desalination process. However, the harsh seawater environment (high salinity and high temperature) causes scale precipitation and corrosion of MED evaporators’ metal tubes, presenting a serious technical challenge to the process. Therefore, the metal/metal alloys used as the material of the MED evaporators’ tubes are expensive and require high energy and costly tube fabrication process. On the other hand, polymers are low-cost, easy to fabricate into tubes, and highly corrosion-resistant, but have low thermal conductivity. Neverthe-less, thermally conductive fillers can enhance the thermal conductivity of polymers. In this article, we carried out a feasibility-study-based techno-economic and socioeconomic analysis, as well as a life-cycle assessment (LCA), of a conventional MED desalination plant that uses titanium tubes and a plant that used thermally enhanced polymer composites (i.e., polyethylene (PE)-expanded graphite (EG) composite) as the tubes’ material. Two different polymer composites containing 30% and 40% filler (expanded graphite/graphene) are considered. Our results indicate that the MED plant based on polymer composite tubes has favored economic and carbon emission metrics with the potential to reduce the cost of the MED evaporator (shell and tubes) by 40% below the cost of the titanium evaporator. Moreover, the equivalent carbon emissions associated with the composite polymer tubes’ evaporator is 35% lower than titanium tubes. On the other hand, the ozone depletion, acidification, and fossil fuel depletion for the polymer composite tubes are comparable with that of the titanium tubes. The recycling of thermally enhanced polymers is not considered in this LCA analysis; however, after the end of life, reusing the polymer material into other products would lower the overall environmental impacts. Moreover, the polymer composite tubes can be produced locally, which will not only reduce the environmental impacts due to transportation but also create jobs for local manufacturing.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Polymers
ISSN
2073-4360
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
5
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
1-20
UT code for WoS article
000628446100001
EID of the result in the Scopus database
2-s2.0-85102393961