All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the use of laser fragmentation for the synthesis of ligand-free ultra-small iron nanoparticles in various liquid environments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F21%3A63543218" target="_blank" >RIV/70883521:28610/21:63543218 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24620/21:00008811

  • Result on the web

    <a href="https://www.mdpi.com/2079-4991/11/6/1538" target="_blank" >https://www.mdpi.com/2079-4991/11/6/1538</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano11061538" target="_blank" >10.3390/nano11061538</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the use of laser fragmentation for the synthesis of ligand-free ultra-small iron nanoparticles in various liquid environments

  • Original language description

    Traditionally, the synthesis of nanomaterials in the ultra-small size regime (1–3 nm diameter) has been linked with the employment of excessive amounts of hazardous chemicals, inevitably leading to significant environmentally detrimental effects. In the current work, we demonstrate the potential of laser fragmentation in liquids (LFL) to produce highly pure and stable iron ultra-small nanoparticles. This is carried out by reducing the size of carbonyl iron microparticles dispersed in various polar solvents (water, ethanol, ethylene glycol, polyethylene glycol 400) and liquid nitrogen. The explored method enables the fabrication of ligand-free iron oxide ultra-small nanoparticles with diameter in the 1–3 nm range, a tight size distribution, and excellent hydrodynamic stability (zeta potential &gt; 50 mV). The generated particles can be found in different forms, including separated ultra-small NPs, ultra-small NPs forming agglomerates, and ultra-small NPs together with zero-valent iron, iron carbide, or iron oxide NPs embedded in matrices, depending on the employed solvent and their dipolar moment. The LFL technique, aside from avoiding chemical waste generation, does not require any additional chemical agent, other than the precursor microparticles immersed in the corresponding solvent. In contrast to their widely exploited chemically synthesized counterparts, the lack of additives and chemical residuals may be of fundamental interest in sectors requiring colloidal stability and the largest possible number of chemically active sites, making the presented pathway a promising alternative for the clean design of new-generation nanomaterials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    000666541800001

  • EID of the result in the Scopus database

    2-s2.0-85107508913