All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Localization of poly(glycidyl methacrylate) grafted on reduced graphene oxide in poly(lactic acid)/poly(trimethylene terephthalate) blends for composites with enhanced electrical and thermal conductivities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F21%3A63544918" target="_blank" >RIV/70883521:28610/21:63544918 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acsanm.1c01843" target="_blank" >https://pubs.acs.org/doi/10.1021/acsanm.1c01843</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsanm.1c01843" target="_blank" >10.1021/acsanm.1c01843</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Localization of poly(glycidyl methacrylate) grafted on reduced graphene oxide in poly(lactic acid)/poly(trimethylene terephthalate) blends for composites with enhanced electrical and thermal conductivities

  • Original language description

    Interfacial localization of conductive fillers in a cocontinuous immiscible polymer blend is an efficient way of improving the electrical and thermal conductivities of the composite. Conductive path formation at the interface of a cocontinuous structure is expected to provide high conductivity by a smaller amount of the filler, which can be used for applications as conductive materials. In this study, biobased poly(lactic acid) (PLA) was blended with poly(trimethylene terephthalate) (PTT) to make the cocontinuous immiscible polymer blend. Poly(glycidyl methacrylate) (PGMA) was grafted on reduced graphene oxide (rGO) to make a PGMA-grafted rGO (rGO-PGMA). The epoxy group of GMA on rGO-PGMA reacted with the end groups of both PLA and PTT and localized at the interface between PLA and PTT by a two-step blending procedure to form the conductive path between PLA and PTT. From transmission electron microscopy observation, it was found that rGO-PGMA localized between the interface of PLA and PTT. Both electrical and thermal conductivities of the composite were improved, which was confirmed by the electrical volume resistivity and thermal diffusivity measurements, compared with neat polymers and other blends.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Nano Materials

  • ISSN

    2574-0970

  • e-ISSN

  • Volume of the periodical

    4

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000692034900096

  • EID of the result in the Scopus database

    2-s2.0-85112415810