All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High-performance, lightweight, and flexible thermoplastic polyurethane nanocomposites with Zn2+-substituted CoFe2O4 nanoparticles and reduced graphene oxide as shielding materials against electromagnetic pollution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F21%3A63545258" target="_blank" >RIV/70883521:28610/21:63545258 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acsomega.1c04192" target="_blank" >https://pubs.acs.org/doi/10.1021/acsomega.1c04192</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsomega.1c04192" target="_blank" >10.1021/acsomega.1c04192</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High-performance, lightweight, and flexible thermoplastic polyurethane nanocomposites with Zn2+-substituted CoFe2O4 nanoparticles and reduced graphene oxide as shielding materials against electromagnetic pollution

  • Original language description

    The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    <a href="/en/project/GA19-23647S" target="_blank" >GA19-23647S: Investigation of Correlation Among Cation Distribution, Particle Size and Physical Properties of Intelligent Spinel Ferrite Nanomaterials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Omega

  • ISSN

    2470-1343

  • e-ISSN

  • Volume of the periodical

    6

  • Issue of the periodical within the volume

    42

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    28098-28118

  • UT code for WoS article

    000711728500050

  • EID of the result in the Scopus database

    2-s2.0-85117800973