Boosting the photoelectrochemical performance of Au/ZnO nanorods by co-occurring gradient doping and surface plasmon modification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F23%3A63564958" target="_blank" >RIV/70883521:28610/23:63564958 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1422-0067/24/1/443" target="_blank" >https://www.mdpi.com/1422-0067/24/1/443</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ijms24010443" target="_blank" >10.3390/ijms24010443</a>
Alternative languages
Result language
angličtina
Original language name
Boosting the photoelectrochemical performance of Au/ZnO nanorods by co-occurring gradient doping and surface plasmon modification
Original language description
Band bending modification of metal/semiconductor hybrid nanostructures requires low-cost and effective designs in photoelectrochemical (PEC) water splitting. To this end, it is evinced that gradient doping of Au nanoparticles (NPs) inwards the ZnO nanorods (NRs) through thermal treatment facilitated faster transport of the photo-induced charge carriers. Systematic PEC measurements show that the resulting gradient Au-doped ZnO NRs yielded a photocurrent density of 0.009 mA/cm2 at 1.1 V (vs. NHE), which is 2.5-fold and 8-fold improved compared to those of Au-sensitized ZnO and the as-prepared ZnO NRs, respectively. The IPCE and ABPE efficiency tests confirmed the boosted photoresponse of gradient Au-incorporated ZnO NRs, particularly in the visible spectrum due to the synergistic surface plasmonic effect of Au NPs. A gradient Au dopant profile promoted the separation and transfer of the photo-induced charge carriers at the electrolyte interface via more upward band bending according to the elaborated electrochemical impedance spectroscopy and Kelvin probe force microscopy analyses. Therefore, this research presents an economical and facile strategy for preparing gradient plasmonic noble NP-incorporated semiconductor NRs, which have excellent potential in energy conversion and storage technologies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
21001 - Nano-materials (production and properties)
Result continuities
Project
<a href="/en/project/LTT20010" target="_blank" >LTT20010: Surface functionalized glass: Concept of heterostructured nanoparticles inspired by artificial photosynthesis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Molecular Sciences
ISSN
1661-6596
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
—
UT code for WoS article
000909759800001
EID of the result in the Scopus database
2-s2.0-85145998512