All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

In situ doping polyanions enables concentration-gradient Ni-rich cathodes for long-life lithium-ion batteries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F23%3A63571819" target="_blank" >RIV/70883521:28610/23:63571819 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c03390" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c03390</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.energyfuels.3c03390" target="_blank" >10.1021/acs.energyfuels.3c03390</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    In situ doping polyanions enables concentration-gradient Ni-rich cathodes for long-life lithium-ion batteries

  • Original language description

    The novel Ni-rich cathode materials with concentration-gradient structures have become a research hotspot by virtue of their advantages of high specific capacity and thermal stability. However, the unfavorable interdiffusion of transition metals (TMs) during lithiation leads to flattening of the gradient and weakens the surface passivation effect. Herein, we successfully constructed a concentration-gradient nickel-rich cathode with an average composition of LiNi0.83Co0.05Mn0.12O2 via a SiO44– polyanion doping strategy (GNCM-Si). SiO44– doping allows the preservation of the concentration-gradient structure at high lithiation temperatures by hindering TM (Ni, Mn) interdiffusion, ensuring high surface stability of nickel-rich cathodes at the end of charge. Besides, the strong Si–O bond effectively stabilizes the lattice oxygen framework, thereby reducing oxygen evolution and further enhancing thermal stability. Accordingly, the as-obtained concentration-gradient cathode demonstrates a high reversible specific capacity of 210.5 mA h g–1 and a high Coulombic efficiency of 89.7% at 0.1C. Impressively, it retains 92.7% of its initial capacity after 500 cycles in pouch-type full cells at 25 °C and 1C. This finding offers a viable idea for constructing concentration-gradient cathodes to meet the high safety requirements of lithium-ion batteries.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energy and Fuels

  • ISSN

    0887-0624

  • e-ISSN

    1520-5029

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    "17553−17560"

  • UT code for WoS article

    001141288400001

  • EID of the result in the Scopus database

    2-s2.0-85178187851