All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Recent progress in cellulose hydrophobization by gaseous plasma treatments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F24%3A63579099" target="_blank" >RIV/70883521:28610/24:63579099 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/16/6/789" target="_blank" >https://www.mdpi.com/2073-4360/16/6/789</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym16060789" target="_blank" >10.3390/polym16060789</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Recent progress in cellulose hydrophobization by gaseous plasma treatments

  • Original language description

    Cellulose is an abundant natural polymer and is thus promising for enforcing biobased plastics. A broader application of cellulose fibers as a filler in polymer composites is limited because of their hydrophilicity and hygroscopicity. The recent scientific literature on plasma methods for the hydrophobization of cellulose materials is reviewed and critically evaluated. All authors focused on the application of plasmas sustained in fluorine or silicon-containing gases, particularly tetrafluoromethane, and hexamethyldisiloxane. The cellulose materials should be pre-treated with another plasma (typically oxygen) for better adhesion of the silicon-containing hydrophobic coating. In contrast, deposition of fluorine-containing coatings does not require pre-treatment, which is explained by mild etching of the cellulose upon treatment with F atoms and ions. The discrepancy between the results reported by different authors is explained by details in the gas phase and surface kinetics, including the heating of samples due to exothermic surface reactions, desorption of water vapor, competition between etching and deposition, the influence of plasma radiation, and formation of dusty plasma. Scientific and technological challenges are highlighted, and the directions for further research are provided.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

    2073-4360

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    001192661700001

  • EID of the result in the Scopus database

    2-s2.0-85189160411