All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of gentamicin-loaded calcium phosphate coating and polymeric coating on the degradation properties of biodegradable iron-based biomaterials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F24%3A63582198" target="_blank" >RIV/70883521:28610/24:63582198 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acsomega.4c06192" target="_blank" >https://pubs.acs.org/doi/10.1021/acsomega.4c06192</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsomega.4c06192" target="_blank" >10.1021/acsomega.4c06192</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of gentamicin-loaded calcium phosphate coating and polymeric coating on the degradation properties of biodegradable iron-based biomaterials

  • Original language description

    In the past decades, iron has been one of the intensively studied biodegradable metals due to its suitable mechanical properties, but it suffers from slow degradation in a physiological environment and low bioactivity. In this work, the beneficial properties of ceramic and polymer coatings were merged to enhance the corrosion properties and biological compatibility of Fe-based biomaterials. A new bilayer coating for Fe-based biomaterials that speeds up degradation while offering controlled, localized drug release to prevent infections was prepared. In addition, bioactive coatings with an incorporated antibiotic (gentamicin, Ge) were produced to introduce antibacterial properties into the prepared biomaterials and thus increase their bioactivity. The calcium phosphate (CaP) coating layer as well as a bioactive coating layer of CaP doped with gentamicin was electrochemically deposited onto an iron substrate. A layer of poly(ethylene glycol) was subsequently applied to the selection of prepared specimens to create a bilayer ceramic/polymer coating. Electrochemical and immersion corrosion tests revealed that the application of a bilayer coating allowed achieving the desired acceleration of degradation, while the application of only a ceramic coating led to a reduction in the corrosion rate. A slight increase in the corrosion rate was observed for samples with bioactive drug-containing coatings compared to samples with drug-free coatings. Higher viability of human fibroblastic cells cultured in the extracts of the tested samples was noted for samples with a bilayer coating compared to a ceramic coating. The addition of gentamicin in the bioactive coatings had no significant effect on the viability value. Antibacterial tests proved the antibacterial activity of samples with a gentamicin-loaded coating layer against Escherichia coli and Staphylococcus aureus strains. A detailed study of the release of gentamicin from the prepared coatings revealed a different mechanism of drug release from the ceramic and the ceramic/polymer coating. Furthermore, it was found that the drug was released more slowly and uniformly from the bilayer coating. It is therefore possible to adjust the amount and duration of drug release from the bioactive coating by the thickness of the upper polymer layer. Incorporation of an antibiotic in a combined ceramic/polymer coating enabled the creation of a high-performance bioactive coating for Fe bone implants with the possibility to release a drug in the vicinity of the implant in a controlled manner to address the needs of the patient.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30404 - Biomaterials (as related to medical implants, devices, sensors)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Omega

  • ISSN

    2470-1343

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    49

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    48299-48314

  • UT code for WoS article

    001364970800001

  • EID of the result in the Scopus database

    2-s2.0-85210373598