Basis properties of p-exponential function of Lindqvist and Peetre type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F71226401%3A_____%2F18%3AN0100202" target="_blank" >RIV/71226401:_____/18:N0100202 - isvavai.cz</a>
Result on the web
<a href="http://mia.ele-math.com/21-68/Basis-properties-of-p-exponential-function-of-Lindqvist-and-Peetre-type" target="_blank" >http://mia.ele-math.com/21-68/Basis-properties-of-p-exponential-function-of-Lindqvist-and-Peetre-type</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7153/mia-2018-21-68" target="_blank" >10.7153/mia-2018-21-68</a>
Alternative languages
Result language
angličtina
Original language name
Basis properties of p-exponential function of Lindqvist and Peetre type
Original language description
We show that a p-exponential function defined by the p-trigonometric functions of Lindqvist and Peetre form a basis in the Lebesgue space for any r ∈ (1,∞), provided n is at most 3 and p is larger than p0>1.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Inequalities & Applications
ISSN
1331-4343
e-ISSN
1848-9966
Volume of the periodical
21
Issue of the periodical within the volume
4
Country of publishing house
HR - CROATIA
Number of pages
10
Pages from-to
1003-10013
UT code for WoS article
000458753800007
EID of the result in the Scopus database
2-s2.0-85055583450