All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Effect of Hihg-Energy Ionizing Radiation on the Mechanical Properties of a Melamine Resin, Phenol-FormaldehydeResin, and Nitrile Rubber Blend

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F18%3A00001355" target="_blank" >RIV/75081431:_____/18:00001355 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Effect of Hihg-Energy Ionizing Radiation on the Mechanical Properties of a Melamine Resin, Phenol-FormaldehydeResin, and Nitrile Rubber Blend

  • Original language description

    Irradiation by ionizing radiation is a specific type of controllable modification of the physical and chemical properties of a wide range of polymers, which is, in comparison to traditional chemical methods, rapid, non-polluting, simple, and relatively cheap. In the presented paper, the influence of high-energy ionizing radiation on the basic mechanical properties of the melamine resin, phenol-formaldehyde resin, and nitrile rubber blend has been studied for the first time. The mechanical properties of irradiated samples were compared to those of non-irradiated materials. It was found that radiation doses up to 150 kGy improved the mechanical properties of the tested materials in terms of a significant increase in stress at break, tensile strength, and tensile modulus at 40% strain, while decreasing the value of strain at break. At radiation doses above 150 kGy, the irradiated polymer blend is already degrading, and its tensile characteristics significantly deteriorate. An radiation dose of 150 kGy thus appears to be optimal from the viewpoint of achieving significant improvement, and the radiation treatment of the given polymeric blend by a beam of accelerated electrons is a very promising alternative to the traditional chemical mode of treatment which impacts the environment.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

  • Volume of the periodical

    11/2018

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85057521411