Higher Order Hamiltonian Systems with Generalized Legendre Transformation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F18%3A00001545" target="_blank" >RIV/75081431:_____/18:00001545 - isvavai.cz</a>
Result on the web
<a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=59&SID=E1ls42tXmkDQk24sVaF&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=59&SID=E1ls42tXmkDQk24sVaF&page=1&doc=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math6090163" target="_blank" >10.3390/math6090163</a>
Alternative languages
Result language
angličtina
Original language name
Higher Order Hamiltonian Systems with Generalized Legendre Transformation
Original language description
The aim of this paper is to report some recent results regarding second order Lagrangians corresponding to 2nd and 3rd order Euler–Lagrange forms. The associated 3rd order Hamiltonian systems are found. The generalized Legendre transformation and geometrical correspondence between solutions of the Hamilton equations and the Euler–Lagrange equations are studied. The theory is illustrated on examples of Hamiltonian systems satisfying the following conditions: (a) the Hamiltonian systemis strongly regular and the Legendre transformation exists; (b) the Hamiltonian systems strongly regular and the Legendre transformation does not exist; (c) the Legendre transformation exists and the Hamiltonian system is not regular but satisfies a weaker condition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
—
UT code for WoS article
000448141200022
EID of the result in the Scopus database
—