Comparison of neural networks and regression time series in estimating the development of the EU and the PRC trade balance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F19%3A00001516" target="_blank" >RIV/75081431:_____/19:00001516 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1051/shsconf/20196101031" target="_blank" >http://dx.doi.org/10.1051/shsconf/20196101031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/shsconf/20196101031" target="_blank" >10.1051/shsconf/20196101031</a>
Alternative languages
Result language
angličtina
Original language name
Comparison of neural networks and regression time series in estimating the development of the EU and the PRC trade balance
Original language description
This paper aims to compare two useful methods, namely the accuracy of time series alignment through regression analysis and artificial neural networks, to assess the evolution of the EU and the People's Republic of China trade balance. The most appropriate curve is selected from the linear regression, and from the neural networks three useful neural structures are selected.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50200 - Economics and Business
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
SHS Web of Conferences: Innovative Economic Symposium 2018 - Milestones and Trends of World Economy (IES2018)
ISBN
9782759890637
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
—
Publisher name
EDP Sciences
Place of publication
Les Ulis, France
Event location
Beijing, China
Event date
Nov 8, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000467727800031