Equalizing seasonal time series using artificial neural networks in predicting the Euro-Yuan exchange rate
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F19%3A00001559" target="_blank" >RIV/75081431:_____/19:00001559 - isvavai.cz</a>
Result on the web
<a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=18&SID=F6xnU9HOLRR1jfSCtjp&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=18&SID=F6xnU9HOLRR1jfSCtjp&page=1&doc=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/jrfm12020076" target="_blank" >10.3390/jrfm12020076</a>
Alternative languages
Result language
angličtina
Original language name
Equalizing seasonal time series using artificial neural networks in predicting the Euro-Yuan exchange rate
Original language description
This contribution aims to propose a methodology for considering seasonal fluctuations in equalizing time series by means of artificial neural networks on the example of Euro and Chinese Yuan. Regression by means of neural networks is carried out. There are two network sets generated, of which the second one focuses on the seasonal fluctuations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50200 - Economics and Business
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Risk and Financial Management
ISSN
1911-8066
e-ISSN
1911-8074
Volume of the periodical
12
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
—
UT code for WoS article
000475294000027
EID of the result in the Scopus database
—