The existence of two homogeneous geodesics in Finsler geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F19%3A00001711" target="_blank" >RIV/75081431:_____/19:00001711 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-8994/11/7/850" target="_blank" >https://www.mdpi.com/2073-8994/11/7/850</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym11070850" target="_blank" >10.3390/sym11070850</a>
Alternative languages
Result language
angličtina
Original language name
The existence of two homogeneous geodesics in Finsler geometry
Original language description
The existence of a homogeneous geodesic in homogeneous Finsler manifolds was positively answered in previous papers. However, the result is not optimal. In the present paper, this result is refined and the existence of at least two homogeneous geodesics in any homogeneous Finsler manifold is proved. In a previous paper, examples of Randers metrics which admit just two homogeneous geodesics were constructed, which shows that the present result is the best possible.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Volume of the periodical
11
Issue of the periodical within the volume
7
Country of publishing house
CH - SWITZERLAND
Number of pages
5
Pages from-to
—
UT code for WoS article
000481979000015
EID of the result in the Scopus database
2-s2.0-85068540930