Better results of artificial neural networks in predicting ČEZ share prices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F20%3A00001826" target="_blank" >RIV/75081431:_____/20:00001826 - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85090721333&origin=resultslist&sort=plf-f&src=s&st1=Better+results+of+artificial+neural+networks+in+predicting+%c4%8cEZ+share+prices&st2=&sid=37c3a606ab869c5c581bd24e508f36dc&sot=b&sdt=b&sl=90&s=TITLE-" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85090721333&origin=resultslist&sort=plf-f&src=s&st1=Better+results+of+artificial+neural+networks+in+predicting+%c4%8cEZ+share+prices&st2=&sid=37c3a606ab869c5c581bd24e508f36dc&sot=b&sdt=b&sl=90&s=TITLE-</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14254/2071-8330.2020/13-2/18" target="_blank" >10.14254/2071-8330.2020/13-2/18</a>
Alternative languages
Result language
angličtina
Original language name
Better results of artificial neural networks in predicting ČEZ share prices
Original language description
The specific objective of the article is to propose a methodology for predicting future price development of the ČEZ, a.s., share prices on Prague Stock Exchange using artificial neural networks and time series exponential smoothing to validate the results on a part of the time series, and to compare the success rate of these two methods. The data used in our analysis is the data on the share prices for the period of 2014-2019. Multilayer perceptron (MLP) and radial basis function (RBF) networks are generated, with the time series time lag of 1, 5, and 10 days.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
50200 - Economics and Business
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of International Studies
ISSN
2071-8330
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
20
Pages from-to
259-278
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85090721333