All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Influence of low-velocity superficial layer on long-period basin-induced surface waves in eastern Osaka basin

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F23%3A00002541" target="_blank" >RIV/75081431:_____/23:00002541 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1186/s40623-023-01804-9.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1186/s40623-023-01804-9.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Influence of low-velocity superficial layer on long-period basin-induced surface waves in eastern Osaka basin

  • Original language description

    The long-period strong ground motions with periods above 1 s have, in the case of farther or deeper earthquakes, potential to cause serious damage to structures with low eigen frequency, such as long bridges, oil tanks, or artificially damped structures, such as high-rise buildings. This work focuses on wave propagation due to the deep large earthquake representing rare deep damaging events of the region, with relatively sparse data coverage, studied for simple geological models computed by 2D finite differences. We model the wave propagation by finite differences using up-to-date 3D structural model of the Osaka basin. The strong surface waves in the region are not directly generated by these deep sources, but they originate by refraction mostly at the edges of the bedrock–sediments interface. The objective of this research is to model observed surface Love wave generated in the eastern part of the basin that propagates approximately westwards and is recorded by several surface stations. At these stations, the 3D finite-difference modeling provides a good fit with the observed surface wave in terms of waveform, amplitude, and arrival time for the most detailed 3D velocity model that contains topmost 50–250 m structure with the lowest S-wave velocities of 250 m/s. The semblance analysis of the synthetic wave field reveals that the respective synthetic surface wave is a result of interfering waves arriving in OSA and WOS stations from NE and SE directions. Performed tests reveal that such a synthetic wave field is extremely sensitive to the presence of the superficial 50—250 m thick low-velocity structure which is only a small fraction of the propagating surface wave length and occupies only part of the surface area. The ability to model the surface wave in terms of amplitude and time arrival validates the 3D structural model for long-period Osaka Bay earthquake scenario computations. Graphical Abstract: [Figure not available: see fulltext.] © 2023, The Author(s).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

  • Continuities

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Earth, Planets and Space

  • ISSN

    1343-8832

  • e-ISSN

  • Volume of the periodical

    75

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    1-16

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85152588311