All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geodesic orbit Finsler (α, β) metrics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F23%3A00002556" target="_blank" >RIV/75081431:_____/23:00002556 - isvavai.cz</a>

  • Result on the web

    <a href="https://link-springer-com.ezproxy.techlib.cz/article/10.1007/s40879-023-00609-0" target="_blank" >https://link-springer-com.ezproxy.techlib.cz/article/10.1007/s40879-023-00609-0</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geodesic orbit Finsler (α, β) metrics

  • Original language description

    Geodesic lemma for homogenenous Finsler (α, β) metrics is formulated in terms of the underlying Riemannian metric α and the one-form β. The existence of a particular reductive decomposition is described for easy construction of Finslerian geodesic graph, in a suitable group extension. As a consequence, it is proved that for the underlying geodesic orbit Riemannian metric α, all Finsler (α, β) metrics are also geodesic orbit metrics. An alternative construction of Finslerian geodesic graph for naturally reductive underlying Riemannian metric α is also described.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Mathematics

  • ISSN

    2199-675X

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85148451577