Metformin Increases Proliferative Activity and Viability of Multipotent Stromal Stem Cells Isolated from Adipose Tissue Derived from Horses with Equine Metabolic Syndrome
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652036%3A_____%2F19%3A00510527" target="_blank" >RIV/86652036:_____/19:00510527 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11310/19:10406755
Result on the web
<a href="https://www.mdpi.com/2073-4409/8/2/80" target="_blank" >https://www.mdpi.com/2073-4409/8/2/80</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/cells8020080" target="_blank" >10.3390/cells8020080</a>
Alternative languages
Result language
angličtina
Original language name
Metformin Increases Proliferative Activity and Viability of Multipotent Stromal Stem Cells Isolated from Adipose Tissue Derived from Horses with Equine Metabolic Syndrome
Original language description
In this study, we investigated the influence of metformin (MF) on proliferation and viability of adipose-derived stromal cells isolated from horses (EqASCs). We determined the effect of metformin on cell metabolism in terms of mitochondrial metabolism and oxidative status. Our purpose was to evaluate the metformin effect on cells derived from healthy horses (EqASC(HE)) and individuals affected by equine metabolic syndrome (EqASC(EMS)). The cells were treated with 0.5 M MF for 72 h. The proliferative activity was evaluated based on the measurement of BrdU incorporation during DNA synthesis, as well as population doubling time rate (PDT) and distribution of EqASCs in the cell cycle. The influence of metformin on EqASC viability was determined in relation to apoptosis profile, mitochondrial membrane potential, oxidative stress markers and BAX/BCL-2 mRNA ratio. Further, we were interested in possibility of metformin affecting the Wnt3a signalling pathway and, thus, we determined mRNA and protein level of WNT3A andcatenin. Finally, using a two-tailed RT-qPCR method, we investigated the expression of miR-16-5p, miR-21-5p, miR-29a-3p, miR-140-3p and miR-145-5p. Obtained results indicate pro-proliferative and anti-apoptotic effects of metformin on EqASCs. In this study, MF significantly improved proliferation of EqASCs, which manifested in increased synthesis of DNA and lowered PDT value. Additionally, metformin improved metabolism and viability of cells, which correlated with higher mitochondrial membrane potential, reduced apoptosis and increased WNT3A/-catenin expression. Metformin modulates the miRNA expression differently in EqASC(HE) and EqASC(EMS). Metformin may be used as a preconditioning agent which stimulates proliferative activity and viability of EqASCs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10601 - Cell biology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Cells
ISSN
2073-4409
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
80
UT code for WoS article
000460896000002
EID of the result in the Scopus database
—