Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652036%3A_____%2F19%3A00520661" target="_blank" >RIV/86652036:_____/19:00520661 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11110/19:10397535
Result on the web
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215028" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0215028" target="_blank" >10.1371/journal.pone.0215028</a>
Alternative languages
Result language
angličtina
Original language name
Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice
Original language description
Expression of hepcidin, the hormone regulating iron homeostasis, is increased by iron overload and decreased by accelerated erythropoiesis or iron deficiency. The purpose of the study was to examine the effect of these stimuli, either alone or in combination, on the main signaling pathway controlling hepcidin biosynthesis in the liver, and on the expression of splenic modulators of hepcidin biosynthesis. Liver phosphorylated SMAD 1 and 5 proteins were determined by immunoblotting in male mice treated with iron dextran, kept on an iron deficient diet, or administered recombinant erythropoietin for four consecutive days. Administration of iron increased liver phosphorylated SMAD protein content and hepcidin mRNA content, subsequent administration of erythropoietin significantly decreased both the iron-induced phosphorylated SMAD proteins and hepcidin mRNA. These results are in agreement with the recent observation that erythroferrone binds and inactivates the BMP6 protein. Administration of erythropoietin substantially increased the amount of erythroferrone and transferrin receptor 2 proteins in the spleen, pretreatment with iron did not influence the erythropoietin-induced content of these proteins. Erythropoietin-treated iron-deficient mice displayed smaller spleen size in comparison with erythropoietin-treated mice kept on a control diet. While the erythropoietin-induced increase in splenic erythroferrone protein content was not significantly affected by iron deficiency, the content of transferrin receptor 2 protein was lower in the spleens of erythropoietin-treated mice kept on iron-deficient diet, suggesting posttranscriptional regulation of transferrin receptor 2. Interestingly, iron deficiency and erythropoietin administration had additive effect on hepcidin gene downregulation in the liver. In mice subjected both to iron deficiency and erythropoietin administration, the decrease of hepcidin expression was much more pronounced than the decrease in phosphorylated SMAD protein content or the decrease in the expression of the SMAD target genes Id1 and Smad7. These results suggest the existence of another, SMAD-independent pathway of hepcidin gene downregulation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PLoS ONE
ISSN
1932-6203
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
e0215028
UT code for WoS article
000463695900037
EID of the result in the Scopus database
—