Discovery of Bispecific Lead Compounds from Azadirachta indica against ZIKA NS2B-NS3 Protease and NS5 RNA Dependent RNA Polymerase Using Molecular Simulations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652036%3A_____%2F22%3A00557061" target="_blank" >RIV/86652036:_____/22:00557061 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1420-3049/27/8/2562" target="_blank" >https://www.mdpi.com/1420-3049/27/8/2562</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/molecules27082562" target="_blank" >10.3390/molecules27082562</a>
Alternative languages
Result language
angličtina
Original language name
Discovery of Bispecific Lead Compounds from Azadirachta indica against ZIKA NS2B-NS3 Protease and NS5 RNA Dependent RNA Polymerase Using Molecular Simulations
Original language description
Zika virus (ZIKV) has been characterized as one of many potential pathogens and placed under future epidemic outbreaks by the WHO. However, a lack of potential therapeutics can result in an uncontrolled pandemic as with other human pandemic viruses. Therefore, prioritized effective therapeutics development has been recommended against ZIKV. In this context, the present study adopted a strategy to explore the lead compounds from Azadirachta indica against ZIKV via concurrent inhibition of the NS2B-NS3 protease (ZIKV(pro)) and NS5 RNA dependent RNA polymerase (ZIKV(RdRp)) proteins using molecular simulations. Initially, structure-based virtual screening of 44 bioflavonoids reported in Azadirachta indica against the crystal structures of targeted ZIKV proteins resulted in the identification of the top four common bioflavonoids, viz. Rutin, Nicotiflorin, Isoquercitrin, and Hyperoside. These compounds showed substantial docking energy (-7.9 to11.01 kcal/mol) and intermolecular interactions with essential residues of ZIKV(pro) (B:His(51), B:Asp(75), and B:Ser(135)) and ZIKV(RdRp) (Asp(540), Ile(799), and Asp(665)) by comparison to the reference compounds, O7N inhibitor (ZIKV(pro)) and Sofosbuvir inhibitor (ZIKV(RdRp)). Besides, long interval molecular dynamics simulation (500 ns) on the selected docked poses reveals stability of the respective docked poses contributed by intermolecular hydrogen bonds and hydrophobic interactions. The predicted complex stability was further supported by calculated end-point binding free energy using molecular mechanics generalized born surface area (MM/GBSA) method. Consequently, the identified common bioflavonoids are recommended as promising therapeutic inhibitors of ZIKV(pro) and ZIKV(RdRp) against ZIKV for further experimental assessment.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Molecules
ISSN
1420-3049
e-ISSN
1420-3049
Volume of the periodical
27
Issue of the periodical within the volume
8
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
2562
UT code for WoS article
000786775600001
EID of the result in the Scopus database
2-s2.0-85128801747