Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652052%3A_____%2F17%3AN0000062" target="_blank" >RIV/86652052:_____/17:N0000062 - isvavai.cz</a>
Alternative codes found
RIV/00025798:_____/17:00000319
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0265931X16302387" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0265931X16302387</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jenvrad.2016.07.008" target="_blank" >10.1016/j.jenvrad.2016.07.008</a>
Alternative languages
Result language
angličtina
Original language name
Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic
Original language description
The purpose of the study is to determine radon-prone areas in the Czech Republic based on the measurements of indoor radon concentration and independent predictors (rock type and permeability of the bedrock, gamma dose rate, GPS coordinates and the average age of family houses). The relationship between the mean observed indoor radon concentrations in monitored areas (∼ 22% municipalities) and the independent predictors was modelled using a bagged neural network. Levels of mean indoor radon concentration in the unmonitored areas were predicted using the bagged neural network model fitted for the monitored areas. The propensity to increased indoor radon was determined by estimated probability of exceeding the action level of 300Bq/m3.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Environmental Radioactivity
ISSN
0265-931X
e-ISSN
—
Volume of the periodical
166
Issue of the periodical within the volume
SI - Part 2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
5
Pages from-to
398-402
UT code for WoS article
000390073700018
EID of the result in the Scopus database
2-s2.0-84992323861