Multidecadal analysis of forest growth and albedo in boreal Finland
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F16%3A00461647" target="_blank" >RIV/86652079:_____/16:00461647 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jag.2016.07.001" target="_blank" >http://dx.doi.org/10.1016/j.jag.2016.07.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jag.2016.07.001" target="_blank" >10.1016/j.jag.2016.07.001</a>
Alternative languages
Result language
angličtina
Original language name
Multidecadal analysis of forest growth and albedo in boreal Finland
Original language description
It is well known that forests serve as carbon sinks. In the last 30 years, there has been a steady increase in the growing stock of Finnish forests by nearly a quarter while the area of the forests has remained virtually unchanged. Such increase in forest density together with the availability of detailed forest inventories provided by the Multi-Source National Forest Inventory (MS-NFI) in high spatial resolution makes Finland an ideal candidate for exploring the effects of increased forest density on satellite derived estimates of bio-geochemical products e.g. albedo (directional-hemispherical reflectance, DHR), fraction of photosynthetically active radiation absorbed by canopies (fAPAR), leaf area index (LAI) and normalized difference vegetation index (NDVI) in both current and long-term perspective. In this study, we first used MODIS-based vegetation satellite products for Finnish forests to study their seasonal patterns and interrelations. Next, the peak growing season observations are linked to the MS-NFI database to yield the generic relationships between forest density and the satellite-derived vegetation indicators. Finally, long-term GIMMS3g datasets between 1982 and 2011 (2008 for DHR) are analyzed and interpreted using forest inventory data. The vegetation peak growing season NIR DHR and VIS DHR showed weak to moderate negative correlation with fAPAR, whereas there was no correlation between NIR DHR and fAPAR. Next, we show that the spectral albedos in the near-infrared region (NIR DHR) showed weak negative correlation with forest biomass, basal area or canopy cover whereas, as expected, the spectral albedo in the visible region (VIS DHR) correlated negatively with these measures of forest density. Interestingly, the increase in forest density (biomass per ha) of Finnish forests during the last 30 years was not accompanied by trends in the indicators of vegetation greenness’ and photosynthetic productivity (fAPAR, LAI and NDVI) or in forest albedo (DHR).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
EH - Ecology - communities
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Applied Earth Observation and Geoinformation
ISSN
0303-2434
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
OCT
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
296-305
UT code for WoS article
000383003500027
EID of the result in the Scopus database
2-s2.0-84997840804