All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F17%3A00479472" target="_blank" >RIV/86652079:_____/17:00479472 - isvavai.cz</a>

  • Result on the web

    <a href="https://academic.oup.com/jxb/article/69/4/825/4372214" target="_blank" >https://academic.oup.com/jxb/article/69/4/825/4372214</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/jxb/erx333" target="_blank" >10.1093/jxb/erx333</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants

  • Original language description

    The study of senescence in plants is complicated by diverse levels of temporal and spatial dynamics as well as the impact of external biotic and abiotic factors and crop plant management. Whereas the molecular mechanisms involved in developmentally regulated leaf senescence are very well understood, in particular in the annual model plant species Arabidopsis, senescence of other organs such as the flower, fruit, and root is much less studied as well as senescence in perennials such as trees. This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence. That became feasible through major advances in the establishment of various, complementary ‘omics’ technologies. Such an interdisciplinary approach will also need to consider knowledge from the animal field, in particular in relation to novel regulators such as small, non-coding RNAs, epigenetic control and telomere length. Such a characterization of phenotypes via the acquisition of high-dimensional datasets within a systems biology approach will allow us to systematically characterize the various programmes governing senescence beyond leaf senescence in Arabidopsis and to elucidate the underlying molecular processes. Such a multi-omics approach is expected to also spur the application of results from model plants to agriculture and their verification for sustainable and environmentally friendly improvement of crop plant stress resilience and productivity and contribute to improvements based on postharvest physiology for the food industry and the benefit of its customers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    <a href="/en/project/LO1415" target="_blank" >LO1415: CzechGlobe 2020 – Development of the Centre of Global Climate Change Impacts Studies</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Experimental Botany

  • ISSN

    0022-0957

  • e-ISSN

  • Volume of the periodical

    69

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    825-844

  • UT code for WoS article

    000425379300010

  • EID of the result in the Scopus database

    2-s2.0-85042286484