All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Statistical analyses of Land Surface Temperature in Local Climate Zones: Case study of Brno and Prague (Czech Republic)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F17%3A00485079" target="_blank" >RIV/86652079:_____/17:00485079 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/17:00096376

  • Result on the web

    <a href="http://dx.doi.org/10.1109/JURSE.2017.7924530" target="_blank" >http://dx.doi.org/10.1109/JURSE.2017.7924530</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JURSE.2017.7924530" target="_blank" >10.1109/JURSE.2017.7924530</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Statistical analyses of Land Surface Temperature in Local Climate Zones: Case study of Brno and Prague (Czech Republic)

  • Original language description

    The classification of local climate zones (LCZs) emerged in urban climatology to standardize description of urban climate research sites. One of the goals of classification was to get beyond urban-rural dichotomy which enabled to study urban air temperature field in more detail. Based on empirical and modelling work LCZ have proven effective in examining intra-urban air temperature differences, however a robust examination of intra-urban land surface temperatures using the LCZ framework remains elusive. In this study a GIS-based method is used for LCZ delimitation in Prague and Brno (Czech Republic), while land surface temperatures (LSTs) derived from LANDSAT and ASTER satellite data are employed for exploring the extent to which LCZ classes discriminate with respect to LSTs. Results indicate that LCZs demonstrate the features typical of LST variability, and thus typical surface temperatures differ significantly among most LCZs. ANOVA and subsequent multiple comparison tests demonstrated that significant temperature differences between the various LCZs prevail in both cities (89.3% and 91.6% significant LST differences for Brno and Prague respectively). In general, LCZ 8 (large low-rise buildings), LCZ 10 (heavy industry) and LCZ D (low plants) are well-distinguishable, while LCZ 2 (compact midrise), LCZ 4 (open high-rise), and LCZ 9 (sparsely built-up) are less distinguishable in terms of their LST. In most of the scenes LCZ 10 (heavy industry), LCZ 2 (mid-rise buildings) and LCZ 3 (low-rise building) are the warmest and LCZ G (water bodies) and LCZ A (dense forest) are the coolest zones in term of their LST. Further studies are needed to account for observational errors (such as seasons differences or thermal anisotropy) on LCZ LST patterns.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    JOINT URBAN REMOTE SENSING EVENT (JURSE)

  • ISBN

    978-1-5090-5808-2

  • ISSN

    2334-0932

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Dubai

  • Event date

    Mar 6, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000406006100002