All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics

Result description

The xanthophyll cycle regulates the energy flow to photosynthetic reaction centres of plant leaves. Changes in the de-epoxidation state (DEPS) of xanthophyll cycle pigments can be observed as changes in the leaf absorption of light with wavelengths between 500 to 570 nm. These spectral changes can be a good remote sensing indicator of the photosynthetic efficiency, and are traditionally quantified with a two-band physiologically based optical index, the Photochemical Reflectance Index (PRI). In this paper, we present an extension of the plant leaf radiative transfer model Fluspect (Fluspect-CX) that reproduces the spectral changes in a wide band of green reflectance: a radiative transfer analogy to the PRI. The idea of Fluspect-CX is to use in vivo specific absorption coefficients for two extreme states of carotenoids, representing the two extremes of the xanthophyll de-epoxidation, and to describe the intermediate states as a linear mixture of these two states. The ‘photochemical reflectance parameter’ (C x ) quantifies the relative proportion of the two states. Fluspect-CX simulates leaf chlorophyll fluorescence (ChlF) excitation-emission matrices, as well as reflectance (R) and transmittance (T) spectra as a function of leaf structure, pigment contents and C x . We describe the calibration of the model and test its performance using various experimental datasets. Furthermore, we retrieved C x from optical measurements of various datasets. The retrieved C x correlates well with xanthophyll DEPS (R 2 = 0.57), as well with non-photochemical quenching (NPQ) of fluorescence (R 2 = 0.78). The correlation with NPQ enabled us to incorporate Fluspect-CX in the model SCOPE to scale the processes to the canopy level. Introducing the dynamic green reflectance into a radiative transfer model provides new means to study chlorophyll fluorescence and PRI dynamics on leaf and canopy scales, which is crucial for the remote sensing.

Keywords

FluspectLeaf chlorophyll fluorescencepriReflectancescopeXanthophyll cycle

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics

  • Original language description

    The xanthophyll cycle regulates the energy flow to photosynthetic reaction centres of plant leaves. Changes in the de-epoxidation state (DEPS) of xanthophyll cycle pigments can be observed as changes in the leaf absorption of light with wavelengths between 500 to 570 nm. These spectral changes can be a good remote sensing indicator of the photosynthetic efficiency, and are traditionally quantified with a two-band physiologically based optical index, the Photochemical Reflectance Index (PRI). In this paper, we present an extension of the plant leaf radiative transfer model Fluspect (Fluspect-CX) that reproduces the spectral changes in a wide band of green reflectance: a radiative transfer analogy to the PRI. The idea of Fluspect-CX is to use in vivo specific absorption coefficients for two extreme states of carotenoids, representing the two extremes of the xanthophyll de-epoxidation, and to describe the intermediate states as a linear mixture of these two states. The ‘photochemical reflectance parameter’ (C x ) quantifies the relative proportion of the two states. Fluspect-CX simulates leaf chlorophyll fluorescence (ChlF) excitation-emission matrices, as well as reflectance (R) and transmittance (T) spectra as a function of leaf structure, pigment contents and C x . We describe the calibration of the model and test its performance using various experimental datasets. Furthermore, we retrieved C x from optical measurements of various datasets. The retrieved C x correlates well with xanthophyll DEPS (R 2 = 0.57), as well with non-photochemical quenching (NPQ) of fluorescence (R 2 = 0.78). The correlation with NPQ enabled us to incorporate Fluspect-CX in the model SCOPE to scale the processes to the canopy level. Introducing the dynamic green reflectance into a radiative transfer model provides new means to study chlorophyll fluorescence and PRI dynamics on leaf and canopy scales, which is crucial for the remote sensing.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote Sensing of Environment

  • ISSN

    0034-4257

  • e-ISSN

  • Volume of the periodical

    211

  • Issue of the periodical within the volume

    Jun

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    345-356

  • UT code for WoS article

    000433650700027

  • EID of the result in the Scopus database

    2-s2.0-85046036100