Basic and extensible post-processing of eddy covariance flux data with REddyProc
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F18%3A00492422" target="_blank" >RIV/86652079:_____/18:00492422 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.5194/bg-15-5015-2018" target="_blank" >http://dx.doi.org/10.5194/bg-15-5015-2018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/bg-15-5015-2018" target="_blank" >10.5194/bg-15-5015-2018</a>
Alternative languages
Result language
angličtina
Original language name
Basic and extensible post-processing of eddy covariance flux data with REddyProc
Original language description
With the eddy covariance (EC) technique, net fluxes of carbon dioxide (CO2) and other trace gases as well as water and energy fluxes can be measured at the ecosystem level. These flux measurements are a main source for understanding biosphere–atmosphere interactions and feedbacks through cross-site analysis, model–data integration, and upscaling. The raw fluxes measured with the EC technique require extensive and laborious data processing. While there are standard tools1 available in an open-source environment for processing high-frequency (10 or 20Hz) data into half-hourly quality-checked fluxes, there is a need for more usable and extensible tools for the subsequent post-processing steps. We tackled this need by developing the REddyProc package in the cross-platform language R that provides standard CO2-focused post-processing routines for reading (half-)hourly data from different formats, estimating the u* threshold, as well as gap-filling, flux-partitioning, and visualizing the results. In addition to basic processing, the functions are extensible and allow easier integration in extended analysis than current tools. New features include cross-year processing and a better treatment of uncertainties. A comparison of REddyProc routines with other state-of-the-art tools resulted in no significant differences in monthly and annual fluxes across sites. Lower uncertainty estimates of both u* and resulting gap-filled fluxes by 50% with the presented tool were achieved by an improved treatment of seasons during the bootstrap analysis. Higher estimates of uncertainty in daytime partitioning (about twice as high) resulted from a better accounting for the uncertainty in estimates of temperature sensitivity of respiration. The provided routines can be easily installed, configured, and used. Hence, the eddy covariance community will benefit from the REddyProc package, allowing easier integration of standard post-processing with extended analysis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Biogeosciences
ISSN
1726-4170
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
16
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
5015-5030
UT code for WoS article
000442523000001
EID of the result in the Scopus database
2-s2.0-85052572261