An index-flood statistical model for hydrological drought assessment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F20%3A00524622" target="_blank" >RIV/86652079:_____/20:00524622 - isvavai.cz</a>
Alternative codes found
RIV/60460709:41110/20:82323 RIV/60460709:41330/20:82323 RIV/00020711:_____/20:00005046
Result on the web
<a href="https://www.mdpi.com/2073-4441/12/4/1213/htm" target="_blank" >https://www.mdpi.com/2073-4441/12/4/1213/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/W12041213" target="_blank" >10.3390/W12041213</a>
Alternative languages
Result language
angličtina
Original language name
An index-flood statistical model for hydrological drought assessment
Original language description
Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901-2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson-Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10503 - Water resources
Result continuities
Project
<a href="/en/project/GC19-24089J" target="_blank" >GC19-24089J: XEROS: eXtreme EuRopean drOughtS - Multimodel synthesis of past, present and future events</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Water
ISSN
2073-4441
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
1213
UT code for WoS article
000539527500290
EID of the result in the Scopus database
2-s2.0-85085172010