All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exploring non-linear relationships among redundant variables through non-parametric principal component analysis: An empirical analysis with land-use data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00542554" target="_blank" >RIV/86652079:_____/21:00542554 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.academia.edu/44560921/Exploring_non_linear_relationships_among_redundant_variables_through_non_parametric_principal_component_analysis_An_empirical_analysis_with_land_use_data" target="_blank" >https://www.academia.edu/44560921/Exploring_non_linear_relationships_among_redundant_variables_through_non_parametric_principal_component_analysis_An_empirical_analysis_with_land_use_data</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15196/RS110105" target="_blank" >10.15196/RS110105</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exploring non-linear relationships among redundant variables through non-parametric principal component analysis: An empirical analysis with land-use data

  • Original language description

    Principal Component Analysis (PCA) is a widely applied statistical technique aimed at summarising a multidimensional set of input (partly redundant) variables into a restricted number of independent components that are linear combinations of the inputs. PCA transforms the original data matrix by performing a spectral decomposition of the related variance/covariance (or correlation) matrix. When decomposing a correlation matrix, Pearson product-moment correlation coefficients are traditionally used in the correlation matrix. The statistical properties of Pearson correlation coefficients (being insensitive to non-linear, high-order correlations) represent an intrinsic limitation of PCA, restricting its applicability to linear relationships among inputs. However, working with variables displaying (more or less intense) deviations from linearity is common in both socioeconomic research and environmental studies. Following the theoretical assumptions of earlier studies, a generalisation of PCA aimed at exploring non-linear multivariate relationships among inputs is illustrated in the present article by using non-parametric Spearman and Kendall coefficients to replace linear Pearson coefficients in the correlation matrix. The per cent share of 19 land-use classes in the total landscape in a given study area (the Athens metropolitan region, Greece), obtained from a high-resolution map at the local scale, were used as inputs. The results of the standard PCA (via decomposition of a Pearson linear correlation matrix) and a generalised approach (via decomposition of a non-parametric correlation matrix based on Spearman or Kendall rank coefficients) were compared using traditional diagnostics. The PCA performed by decomposing a Spearman correlation matrix exhibited the highest variance extracted by the principal components, giving refined loadings and scores that allow recognition of latent land-use patterns. Contributing to a recent debate on the use of multidimensional techniques in regional studies, non-parametric approaches are promising tools for analysis of large datasets displaying complex, almost non-linear relationships among inputs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Regional Statistics

  • ISSN

    2063-9538

  • e-ISSN

    2064-8243

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    16

  • Pages from-to

    25-41

  • UT code for WoS article

    000613906400002

  • EID of the result in the Scopus database

    2-s2.0-85101932836